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The ABFST model and high energy scattering 

I G HALLIDAY, S ISLAM and G PARRY 
Department of Physics, Imperial College of Science and Technology, Prince Consort Rd, 
London SW7, UK 

MS received 13 January 1972 

Abstract. We study the exact form of the ABFST integral equation treating it as an equation 
for the irreducible kernel, given the total x x  cross section. The usual identification of the 
irreducible kernel with the elastic cross section is seen to be highly unlikely. The result 
depends‘ violently on the off-mass-shell behaviour of the x x  amplitude. In general bhe ir- 
reducible kernel is not even positive definite. 

1. Introduction 

Over the past few years a great deal of theoretical effort has gone into trying to compute 
the Regge trajectories and residues for elastic scattering on the basis of models for the 
2 -+ n production process. Historically the first model was due to Bertocchi et a1 (1962) 
and Amati et a1 (1962). The starting point for their model was the claim that the dominant 
Feynman diagrams for the production of n-pions were those with the maximal number 
of exchanged pions in the ‘t channel’ as in figure 1. Thus at each ‘vertex’ down the chain 
only two pions come out. Using unitarity this leads to the equation shown schematically 
in figure 2. 

Figure 1. The ABFST production amplitude. Figure 2. The ABFST integral equation. 

From the work of Tow (1970) and Chew et a1 (1970), which we will discuss later, it 
turns out that the kernel of the integral equation shown in figure 2 is not big enough to 
give a constant total cross section as s -+ CO. The authors of the second paper first of all 
calculate the energy dependence of the forward elastic amplitude at high s with only low 
energy resonances in o,,. This turns out to be Im A - so’*. The inclusion of the high 
energy tail in oc,(s) boosts this slightly but not far enough. 
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In this paper we wish to study this problem in reverse order. Thus we shall assume 
a specific form for the total nn cross section and we shall solve the equation of figure 3 
for the irreducible kernel I which, by definition, has no two pion states in the t channel. 
In order to make this definition unique we really need to know the off-mass-shell 
behaviour of the imaginary part of the forward elastic amplitude. Since we do not know 
this dependence we shall try various forms during our calculation. 

Figure3. The equation defining the irreducible kernel. A is the imaginary part of the 
forward elastic amplitude. 

In g43 perturbation theory which has been used extensively to serve as a model for 
high energy processes this irreducible kernel has one surprising feature. In the weak 
coupling limit, which is the only regime where a systematic asymptotic calculus exists 
(Eden et a1 1966), the irreducible kernel does not contain any contribution from the 
leading trajectory. This is discussed in the Appendix. Extrapolating wildly we see that 
the high energy tail of the irreducible kernel may be very different from the tail of the 
elastic amplitude. 

Originally we hoped that I ( s )  might be small for large s so that a calculation ignoring 
the high energy tail would be meaningful. Then the input of (T&) for small s would give 
I ( s )  for small s. Ignoring the high energy tail of I ( s )  we could then solve for ot,,(s) as s --+ 8% 

in a noncircular manner. 
Unfortunately our irreducible kernel turns out to be large at moderately high s and 

so we need the input of gtOt(s) at large s. The above sequence then becomes circular. 
In this paper we shall calculate all quantities at t = 0. 

2. The equation 

This equation has been discussed so often that we merely quote the results. It takes the 
form : 

I ( s )  = Im A(s, m’) + ds”F(s, s”)Z(s”) (2.1) s 
du 1 S m a x  U ”lax 

F(s,  s”) = - __ zK(s ,  s‘, s”, u)Im A@’, U) (2.2) 
87c4 l4,& ds’ sumin (U - m,) 

K = d4q’6(q’’ - u)b((q - 4’)’ - S’)d((q’ + p)’ - s”) s 
with momenta labelled as in figure 4. Im A(s, U) is the imaginary part of the forward 
amplitude with two of the particles off-mass-shell with mz = U. The term I ( s )  is the two 
particle irreducible part of Im A .  We shall assume that it has no off-mass-shell depend- 
ence. In order to determine any such dependence we would have to know Im A with 
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Figure 4. The momenta and invariants of the integral equation. 

all four external particles off-shell. However, in (2.2) we shall examine various U depend- 
ences of Im A(s', U). 

In this paper we shall only consider the amplitudes corresponding to exchange of 
zero quantum numbers in the t channel. Thus we are looking at the pomeron. 

Since we are interested in the low energy behaviour of I ( s )  as well as its high energy 
behaviour we have made no t channel partial wave decomposition of any kind. 

With our assumptions the equation for I ( s )  becomes Volterra. Thus to compute I ( s )  
for s < so we only need to know A(s, U) for s < so. This means that when we reduce the 
integral to a gaussian integration so that the integral equation becomes a matrix equation 
the matrix is lower triangular. Its inversion is therefore numerically trivial. On the other 
hand if I(s) is small compared to Im A(s, m2) for large s then we lose numerical accuracy 
rather quickly because of the large cancellations between the two terms on the righthand 
side of (2.2). 

By looking at unitarity it is clear that I ( s )  should be positive for all s > 4m2. However, 
this is not guaranteed by the above equation and indeed we will obtain negative solutions. 
As input we have assumed an Im A with the following properties. At high energies it 
gives a constant total nn cross section of 16 mb. At low energies we use the resonance 
parameters given in Chew et al (1970). The pomeron term is continued down to low 
energies to give a background term to the resonances in agreement with the Harari- 
Freund conjecture. 

3. The solutions 

In figure 5 the input Im A(s, m2)  is shown as curve A. If no further U dependence is 
assumed for Im A then the irreducible kernel is shown in curve D. If Im A(s, U) is set 
equal to zero for [U( > 1 GeV2 and unaltered otherwise we get curve B. If we try and 
mock up the calculation of Chew et al (1970) and use this cut-off only for s > 3 GeV2 
then we get curve C. Thus we see that I ( s )  is very near Im A(s, m2)  for s < 3 GeV2. In 
particular we see that the high mass resonances correspond to ctot rather than ce,. 
Unfortunately our integration routines cannot cope with the resonances accurately for 
s > 20 GeV2. However, they are contributing rather little to the integral for s > 20 GeV? 
In figure 6 we show the results of computing I ( s )  at very much higher s with Im A(s, m2)  
given solely by the pomeron term. The line A corresponds to Im A(s, m2). The curve E 
corresponds to no U cut-off in Im A(s, U) while B, C and D correspond to setting Im A(s, U) 
zero for U > 1, 10, 100 GeV2 respectively. We see in a rather startling manner how the 
U dependence is crucial in solving for I(s) at large s. Indeed, the whole dynamics seems 
to depend violently on the off-mass shell behaviour. As a check on our arithmetic we 
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Figure 5. The input amplitude (curve A) and the irreducible kernel for various U cut-offs. 
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Figure 6. The irreducible kernel at larger s. 

have solved for Im A(s, m2) with these irreducible kernels as input. They reproduce the 
original input to about 1 % accuracy. As a further check that our program would have 
found an irreducible kernel which tended to zero for large s we ran the program forwards 
and backwards with an input I consisting of a single resonance. The resonance residue 
was chosen to give a high lying trajectory when we solved for Im A.  Putting the output 
ImA back into our equation and solving for I we obtained our input to reasonable 
accuracy. 

In figure 7 we show the results of solving the equation with I ( s )  gven by crel(s). 
Curve A corresponds to the irreducible kernel I @ ) .  If we put a 1 GeV2 cut-off on U for 
s" > 3 GeV2 then B is the output Im A. This gives a leading output trajectory a(0) 5 0.4. 
The curve C corresponds to using the U cut-off for all SI'. Curves D and E correspond to 
multiplying the input resonances by 3.0 and 4.2 respectively while keeping the cut-off 
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Figure 7. The output amplitude for various input irreducible amplitudes. 

tail for s" > 3 GeV'. They correspond to leading trajectories at a(0) - 0.7 and a(0) - 1.0 
respectively. Notice that the total cross section corresponding to the a(0) - 1.0 solution 
is about 80 mb. This agrees reasonably well with the estimate implied in Abarbanel et al 
(1970). 

4. Conclusion 

We thus see that the irreducible kernel as we have defined it is not a simple object. In 
particular its high energy behaviour is very dependent on the off-mass-shell behaviour 
of the nn amplitude. It may be that if we considered a kernel irreducible with respect 
to K exchange as well as 71: exchange it would be well behaved. However, this means 
assuming something like SU(3) to determine the crossing matrices. Since K production 
in experiments is so low compared with the SU(3) predictions we cannot trust these 
numbers. 

We have not examined the off-mass-shell dependence in any detail although it is 
clear from unitarity that this must exist in such a way that the irreducible kernel comes 
out positive. 
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Appendix 

First we define a different irreducible function I' by means of the schematic equation of 
figure 8. Then in the jargon of this subject I' has no d lines of length 1 (Eden et a1 1966). 
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Figure 8. The equation defining I '(s)  

Thus we see that although 
A ~ s -  1 +g2Wt)+O(g4)  

I t  rr s-2+g2x'(t)+o(g4) 

Moreover, any graph in I is in I' and we do not expect cancellations in asymptotic 
behaviour. Thus we see that I does not contain the leading trajectory which occurs in A.  

Very crudely one may say that if the t channel iteration of I is supposed to lead to 
the pomeron there is no reason why I should contain it. 
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